High on/off ratios in bilayer graphene field effect transistors realized by surface dopants.
نویسندگان
چکیده
The unique property of bilayer graphene to show a band gap tunable by external electrical fields enables a variety of different device concepts with novel functionalities for electronic, optoelectronic, and sensor applications. So far the operation of bilayer graphene-based field effect transistors requires two individual gates to vary the channel's conductance and to create a band gap. In this paper, we report on a method to increase the on/off ratio in single gated bilayer graphene field effect transistors by adsorbate doping. The adsorbate dopants on the upper side of the graphene establish a displacement field perpendicular to the graphene surface breaking the inversion symmetry of the two graphene layers. Low-temperature measurements indicate that the increased on/off ratio is caused by the opening of a mobility gap.
منابع مشابه
Chemically Modulated Band Gap in Bilayer Graphene Memory Transistors with High On/Off Ratio.
We report a chemically conjugated bilayer graphene field effect transistor demonstrating a high on/off ratio without significant degradation of the on-current and mobility. This was realized by introducing environmentally stable benzyl viologen as an electron-donating group and atmospheric dopants as an electron-withdrawing group, which were used as dopants for the bottom and top of the bilayer...
متن کاملConduction coefficient modeling in bilayer graphene based on schottky transistors
Nowadays carbon nanoparticles are applied on the island of single electron transistor and Nano-transistors. The basis of single electron devices (SEDs) is controllable single electron transfer between small conducting islands. Based on the important points in quantum mechanics, when a wave passes through several spatial regions with different boundaries, the wave function of the first region di...
متن کاملSingle-gate bandgap opening of bilayer graphene by dual molecular doping.
Dual doping-driven perpendicular electric field with opposite directions remarkably increase the on/off current ratio of bilayer graphene field-effect transistors. This unambiguously proves that it is possible to open a bandgap with two molecular dopants (F4-TCNQ and NH2 -functionalized self-assembled monolayers (SAMs)) even in a single-gate device structure.
متن کاملGraphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature.
Graphene is considered to be a promising candidate for future nanoelectronics due to its exceptional electronic properties. Unfortunately, the graphene field-effect transistors (FETs) cannot be turned off effectively due to the absence of a band gap, leading to an on/off current ratio typically around 5 in top-gated graphene FETs. On the other hand, theoretical investigations and optical measur...
متن کاملCurrent saturation and voltage gain in bilayer graphene field effect transistors.
The emergence of graphene with its unique electrical properties has triggered hopes in the electronic devices community regarding its exploitation as a channel material in field effect transistors. Graphene is especially promising for devices working at frequencies in the 100 GHz range. So far, graphene field effect transistors (GFETs) have shown cutoff frequencies up to 300 GHz, while exhibiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 11 7 شماره
صفحات -
تاریخ انتشار 2011